in fairseq/tasks/multilingual_denoising.py [0:0]
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = self.args.data.split(':')
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
if self.langs is None:
languages = sorted([
name for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
])
else:
languages = sorted(self.langs.split(','))
for name in languages:
assert os.path.exists(os.path.join(data_path, name)), "all the languages must exist"
logger.info("| Training on {0} languages: {1}".format(len(languages), languages))
logger.info("| Language to id mapping: ", {
lang: id for id, lang in enumerate(languages)
}
)
mask_whole_words = get_whole_word_mask(self.args, self.dictionary)
lang_datasets = []
for language in languages:
split_path = os.path.join(data_path, language, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path))
end_token = self.source_dictionary.index('[{}]'.format(language)) \
if self.args.add_lang_token else self.source_dictionary.eos()
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 2, # one less for <s>
pad=self.source_dictionary.pad(),
eos=end_token,
break_mode=self.args.sample_break_mode,
)
logger.info('| loaded {} blocks from: {}'.format(len(dataset), split_path))
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
dataset = AppendTokenDataset(dataset, end_token)
lang_dataset = DenoisingDataset(
dataset,
dataset.sizes,
self.dictionary,
self.mask_idx,
mask_whole_words,
shuffle=self.args.shuffle_instance,
seed=self.seed,
args=self.args,
eos=None if not self.args.add_lang_token else self.source_dictionary.index('[{}]'.format(language)),
)
lang_datasets.append(lang_dataset)
dataset_lengths = np.array(
[len(d) for d in lang_datasets],
dtype=float,
)
logger.info(
'| loaded total {} blocks for all languages'.format(
dataset_lengths.sum(),
)
)
if split == self.args.train_subset:
# For train subset, additionally up or down sample languages.
sample_probs = self._get_sample_prob(dataset_lengths)
logger.info("| Sample probability by language: ", {
lang: "{0:.4f}".format(sample_probs[id])
for id, lang in enumerate(languages)
}
)
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
logger.info("| Up/Down Sampling ratio by language: ", {
lang: "{0:.2f}".format(size_ratio[id])
for id, lang in enumerate(languages)
}
)
resampled_lang_datasets = [
ResamplingDataset(
lang_datasets[i],
size_ratio=size_ratio[i],
seed=self.args.seed,
epoch=epoch,
replace=size_ratio[i] >= 1.0,
)
for i, d in enumerate(lang_datasets)
]
dataset = ConcatDataset(
resampled_lang_datasets,
)
else:
dataset = ConcatDataset(lang_datasets)
lang_splits = [split]
for lang_id, lang_dataset in enumerate(lang_datasets):
split_name = split + '_' + languages[lang_id]
lang_splits.append(split_name)
self.datasets[split_name] = lang_dataset
if split in self.args.valid_subset:
self.args.valid_subset = self.args.valid_subset.replace(
split, ','.join(lang_splits)
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(dataset))
self.datasets[split] = SortDataset(
dataset,
sort_order=[
shuffle,
dataset.sizes,
],
)