def _init_vit_weights()

in src/transformers/models/vit/vision_transformer.py [0:0]


def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = False):
    """ ViT weight initialization
    https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L320
    * When called without n, head_bias, jax_impl args it will behave exactly the same
      as my original init for compatibility with prev hparam / downstream use cases (ie DeiT).
    * When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl
    """
    if isinstance(m, nn.Linear):
        if n.startswith('head'):
            nn.init.zeros_(m.weight)
            nn.init.constant_(m.bias, head_bias)
        elif n.startswith('pre_logits'):
            lecun_normal_(m.weight)
            nn.init.zeros_(m.bias)
        else:
            if jax_impl:
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    if 'mlp' in n:
                        nn.init.normal_(m.bias, std=1e-6)
                    else:
                        nn.init.zeros_(m.bias)
            else:
                trunc_normal_(m.weight, std=.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
    elif jax_impl and isinstance(m, nn.Conv2d):
        # NOTE conv was left to pytorch default in my original init
        lecun_normal_(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)