in src/minmaxML.py [0:0]
def create_stacked_bonus_plots(num_group_types, extra_error_types, numgroups, specific_errors, index, groupsize,
total_steps):
bonus_plots = []
for err_type in extra_error_types:
# Determine pop error type
if err_type in ['FP', 'FN', 'FP-Log-Loss', 'FN-Log-Loss']:
pop_err_type = '0/1 Loss'
else:
pop_err_type = err_type
grp_errs = compute_stacked_mixture_group_errors(num_group_types, numgroups, specific_errors[err_type], index,
groupsize, total_steps)
pop_errs = compute_mixture_pop_errors(specific_errors[pop_err_type], total_steps)
bonus_plots.append((err_type, grp_errs, pop_errs, pop_err_type))
return bonus_plots