in src/minmaxML.py [0:0]
def create_bonus_plots(extra_error_types, numgroups, specific_errors, index, groupsize, total_steps):
"""
:return: List of bonus plots which is defined by a tuple of (err_type, group_errs, pop_errs, pop_err_type)
"""
bonus_plots = []
for err_type in extra_error_types:
# Determine pop error type
if err_type in ['FP', 'FN', 'FP-Log-Loss', 'FN-Log-Loss']:
pop_err_type = '0/1 Loss'
else:
pop_err_type = err_type
grp_errs = compute_mixture_group_errors(numgroups, specific_errors[err_type], index, groupsize, total_steps)
pop_errs = compute_mixture_pop_errors(specific_errors[pop_err_type], total_steps)
bonus_plots.append((err_type, grp_errs, pop_errs, pop_err_type))
return bonus_plots