amazon-research / network-deconvolution-pp
Duplication

Places in code with 6 or more lines that are exactly the same.

Intro
  • For duplication, we look at places in code where there are 6 or more lines of code that are exactly the same.
  • Before duplication is calculated, the code is cleaned to remove empty lines, comments, and frequently duplicated constructs such as imports.
  • You should aim at having as little as possible (<5%) of duplicated code as high-level of duplication can lead to maintenance difficulties, poor factoring, and logical contradictions.
Learn more...
Duplication Overall
  • 32% duplication:
    • 16,404 cleaned lines of cleaned code (without empty lines, comments, and frequently duplicated constructs such as imports)
    • 5,318 duplicated lines
  • 1,504 duplicates
system32% (5,318 lines)
Duplication per Extension
py26% (3,372 lines)
yaml91% (1,614 lines)
cu19% (298 lines)
h23% (34 lines)
Duplication per Component (primary)
MaskRCNN/pytorch/configs91% (1,614 lines)
Classification/models44% (1,387 lines)
MaskRCNN/pytorch/maskrcnn_benchmark17% (1,323 lines)
Segmentation/models/segmentation65% (439 lines)
Segmentation/models54% (255 lines)
Classification10% (137 lines)
MaskRCNN/pytorch/tools13% (64 lines)
Segmentation7% (61 lines)
Segmentation/datasets13% (38 lines)
MaskRCNN/pytorch0% (0 lines)
MaskRCNN/pytorch/docker0% (0 lines)

Duplication Between Components (50+ lines)

G Classification/models Classification/models Segmentation/models/segmentation Segmentation/models/segmentation Classification/models--Segmentation/models/segmentation 1248 MaskRCNN/pytorch/maskrcnn_benchmark MaskRCNN/pytorch/maskrcnn_benchmark Classification/models--MaskRCNN/pytorch/maskrcnn_benchmark 960 Segmentation/models Segmentation/models Classification/models--Segmentation/models 401 MaskRCNN/pytorch/maskrcnn_benchmark--Segmentation/models/segmentation 590 MaskRCNN/pytorch/tools MaskRCNN/pytorch/tools MaskRCNN/pytorch/maskrcnn_benchmark--MaskRCNN/pytorch/tools 86 Segmentation Segmentation MaskRCNN/pytorch/maskrcnn_benchmark--Segmentation 80

Download: SVG DOT (open online Graphviz editor)

Open 3D force graph...

Show more details on duplication between components...
Longest Duplicates
The list of 20 longest duplicates.
See data for all 1,504 duplicates...
Size#FoldersFilesLinesCode
349 x 2 Classification/models
MaskRCNN/pytorch/maskrcnn_benchmark/layers
deconv.py
deconv.py
20:510 (100%)
20:510 (100%)
view
188 x 2 Classification/models
Segmentation/models/segmentation
deconv.py
deconv.py
20:277 (53%)
18:275 (77%)
view
188 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
deconv.py
deconv.py
20:277 (53%)
18:275 (77%)
view
88 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
paths_catalog_ci.py
paths_catalog_dlfw_ci.py
10:110 (97%)
10:110 (97%)
view
71 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
paths_catalog.py
paths_catalog_ci.py
92:175 (46%)
27:110 (78%)
view
71 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
paths_catalog.py
paths_catalog_dlfw_ci.py
92:175 (46%)
27:110 (78%)
view
70 x 2 Classification/models
Segmentation/models
resnet_imagenet.py
resnetd.py
46:145 (30%)
41:140 (33%)
view
65 x 2 Classification/models
Segmentation/models/segmentation
SyncND.py
SyncND.py
172:271 (24%)
76:175 (53%)
view
61 x 2 Classification/models
Segmentation/models/segmentation
comm.py
comm.py
15:137 (100%)
15:137 (100%)
view
57 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
deconv.py
deconv.py
428:510 (16%)
275:356 (23%)
view
57 x 2 Classification/models
Segmentation/models/segmentation
deconv.py
deconv.py
428:510 (16%)
275:356 (23%)
view
57 x 2 Classification/models
Classification/models
rfnorm.py
rfnorm.py
329:406 (12%)
522:603 (12%)
view
53 x 2 MaskRCNN/pytorch/configs/nd_baselines
MaskRCNN/pytorch/configs/nd_baselines
e2e_mask_rcnn_R_50_FPN_1x_nd_bs128.yaml
e2e_mask_rcnn_R_50_FPN_1x_nd_bs256.yaml
1:55 (80%)
1:55 (80%)
view
51 x 2 Classification/models
Segmentation/models/segmentation
SyncND.py
SyncND.py
355:454 (19%)
118:217 (42%)
view
45 x 2 MaskRCNN/pytorch/configs/nd_baselines
MaskRCNN/pytorch/configs/nd_baselines
e2e_mask_rcnn_R_50_FPN_1x_nd.yaml
e2e_mask_rcnn_R_50_FPN_1x_nd_bs128.yaml
1:47 (63%)
1:47 (68%)
view
45 x 2 MaskRCNN/pytorch/configs/nd_baselines
MaskRCNN/pytorch/configs/nd_baselines
e2e_mask_rcnn_R_50_FPN_1x_nd.yaml
e2e_mask_rcnn_R_50_FPN_1x_nd_bs256.yaml
1:47 (63%)
1:47 (68%)
view
44 x 2 MaskRCNN/pytorch/configs/gn_baselines
MaskRCNN/pytorch/configs/gn_baselines
e2e_mask_rcnn_R_50_FPN_Xconv1fc_1x_gn...
scratch_e2e_mask_rcnn_R_50_FPN_Xconv1...
12:56 (73%)
13:57 (72%)
view
42 x 2 Classification/models
Segmentation/models/segmentation
deconv.py
deconv.py
346:403 (12%)
205:260 (17%)
view
42 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
deconv.py
deconv.py
346:403 (12%)
205:260 (17%)
view
42 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
MaskRCNN/pytorch/maskrcnn_benchmark/layers
deconv.py
deconv.py
207:262 (12%)
346:403 (12%)
view
Duplicated Units
The list of top 20 duplicated units.
See data for all 31 unit duplicates...
Size#FoldersFilesLinesCode
79 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Classification/models
deconv.py
deconv.py
0:0 
0:0 
view
74 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
48 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
32 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
30 x 2 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Classification/models
deconv.py
deconv.py
0:0 
0:0 
view
26 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
23 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
paths_catalog.py
paths_catalog_dlfw_ci.py
paths_catalog_ci.py
0:0 
0:0 
0:0 
view
26 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
18 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/layers
Segmentation/models/segmentation
Classification/models
deconv.py
deconv.py
deconv.py
0:0 
0:0 
0:0 
view
17 x 2 Segmentation/models
Classification/models
resnetd.py
resnet_imagenet.py
0:0 
0:0 
view
17 x 2 Segmentation/models
Classification/models
resnetd.py
resnet_imagenet.py
0:0 
0:0 
view
17 x 2 Segmentation/models/segmentation
Classification/models
SyncND.py
SyncND.py
0:0 
0:0 
view
16 x 2 Segmentation/models
Classification/models
resnetd.py
resnet_imagenet.py
0:0 
0:0 
view
14 x 2 Classification/models
Classification/models
senet.py
dpn.py
0:0 
0:0 
view
23 x 2 Segmentation/models/segmentation
Classification/models
comm.py
comm.py
0:0 
0:0 
view
13 x 2 Segmentation/models
Classification/models
resnetd.py
resnet_imagenet.py
0:0 
0:0 
view
15 x 2 Segmentation/models/segmentation
Classification/models
SyncND.py
SyncND.py
0:0 
0:0 
view
15 x 3 MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
MaskRCNN/pytorch/maskrcnn_benchmark/config
paths_catalog.py
paths_catalog_dlfw_ci.py
paths_catalog_ci.py
0:0 
0:0 
0:0 
view
9 x 2 Segmentation/models/segmentation
Classification/models
SyncND.py
SyncND.py
0:0 
0:0 
view
8 x 2 MaskRCNN/pytorch/maskrcn...hmark/modeling/backbone
MaskRCNN/pytorch/maskrcn...hmark/modeling/backbone
resnet.py
resnet.py
0:0 
0:0 
view