amazon-research / network-deconvolution-pp
File Size

The distribution of size of files (measured in lines of code).

Intro
  • File size measurements show the distribution of size of files.
  • Files are classified in four categories based on their size (lines of code): 1-100 (very small files), 101-200 (small files), 201-500 (medium size files), 501-1000 (long files), 1001+(very long files).
  • It is a good practice to keep files small. Long files may become "bloaters", code that have increased to such gargantuan proportions that they are hard to work with.
Learn more...
File Size Overall
  • There are 217 files with 17,317 lines of code.
    • 0 very long files (0 lines of code)
    • 2 long files (1,051 lines of code)
    • 18 medium size files (5,423 lines of codeclsfd_ftr_w_mp_ins)
    • 34 small files (4,696 lines of code)
    • 163 very small files (6,147 lines of code)
0% | 6% | 31% | 27% | 35%
Legend:
1001+
501-1000
201-500
101-200
1-100


explore: zoomable circles | sunburst | 3D view
File Size per Extension
1001+
501-1000
201-500
101-200
1-100
py0% | 7% | 31% | 31% | 28%
cu0% | 0% | 60% | 28% | 10%
cpp0% | 0% | 70% | 0% | 29%
yaml0% | 0% | 0% | 0% | 100%
h0% | 0% | 0% | 0% | 100%
File Size per Logical Decomposition
primary
1001+
501-1000
201-500
101-200
1-100
Classification0% | 38% | 43% | 0% | 17%
Segmentation0% | 56% | 26% | 0% | 16%
MaskRCNN/pytorch/maskrcnn_benchmark0% | 0% | 28% | 33% | 38%
Classification/models0% | 0% | 42% | 45% | 12%
Segmentation/models0% | 0% | 89% | 0% | 10%
MaskRCNN/pytorch/tools0% | 0% | 59% | 31% | 9%
Segmentation/models/segmentation0% | 0% | 35% | 19% | 45%
Segmentation/datasets0% | 0% | 0% | 99% | <1%
MaskRCNN/pytorch/configs0% | 0% | 0% | 0% | 100%
MaskRCNN/pytorch0% | 0% | 0% | 0% | 100%
MaskRCNN/pytorch/docker0% | 0% | 0% | 0% | 100%
Longest Files (Top 50)
File# lines# units
main_imagenet.py
in Classification
534 15
train.py
in Segmentation
517 10
rfnorm.py
in Classification/models
477 14
resnet.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone
469 20
generate_mask_targets.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
425 -
main.py
in Classification
366 -
deconv.py
in MaskRCNN/pytorch/maskrcnn_benchmark/layers
362 15
deconv.py
in Classification/models
362 15
train_net.py
in MaskRCNN/pytorch/tools
314 6
SyncND.py
in Classification/models
288 17
ROIAlign_cuda.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
287 -
coco_eval.py
in MaskRCNN/pytorch/maskrcnn_benchmark/data/datasets/evaluation/coco
275 9
deconv.py
in Segmentation/models/segmentation
256 12
utils.py
in Segmentation
240 32
net_util.py
in Classification
233 10
resnet_imagenet.py
in Classification/models
230 20
resnetd.py
in Segmentation/models
214 17
resnet.py
in Segmentation/models
213 19
ROIAlign_cpu.cpp
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cpu
208 3
rpn_generate_proposals.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
204 -
bounding_box.py
in MaskRCNN/pytorch/maskrcnn_benchmark/structures
193 18
ROIPool_cuda.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
175 -
roi_box_feature_extractors.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head
172 7
convert_cityscapes_to_coco.py
in MaskRCNN/pytorch/tools/cityscapes
165 4
inference.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn
164 6
make_layers.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling
158 6
anchor_generator.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn
156 16
defaults.py
in MaskRCNN/pytorch/maskrcnn_benchmark/config
156 -
voc.py
in Segmentation/datasets
156 8
paths_catalog.py
in MaskRCNN/pytorch/maskrcnn_benchmark/config
155 4
trainer.py
in MaskRCNN/pytorch/maskrcnn_benchmark/engine
154 3
cityscapes.py
in Segmentation/datasets
152 7
match_proposals.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
151 -
resnet.py
in Classification/models
150 13
segmentation_mask.py
in MaskRCNN/pytorch/maskrcnn_benchmark/structures
149 18
SyncND.py
in Segmentation/models/segmentation
141 7
build.py
in MaskRCNN/pytorch/maskrcnn_benchmark/data
137 6
pnasnet.py
in Classification/models
136 13
densenet_imagenet.py
in Classification/models
136 12
preact_resnet.py
in Classification/models
135 13
voc_eval.py
in MaskRCNN/pytorch/maskrcnn_benchmark/data/datasets/evaluation/voc
134 4
senet.py
in Classification/models
128 9
inference.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/mask_head
127 10
simple.py
in Classification/models
123 6
c2_model_loading.py
in MaskRCNN/pytorch/maskrcnn_benchmark/utils
118 6
vgg_imagenet.py
in Classification/models
115 15
checkpoint.py
in MaskRCNN/pytorch/maskrcnn_benchmark/utils
112 10
densenet.py
in Classification/models
110 13
nms.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
108 -
dpn.py
in Classification/models
108 8
Files With Most Units (Top 20)
File# lines# units
utils.py
in Segmentation
240 32
resnet.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone
469 20
resnet_imagenet.py
in Classification/models
230 20
resnet.py
in Segmentation/models
213 19
bounding_box.py
in MaskRCNN/pytorch/maskrcnn_benchmark/structures
193 18
segmentation_mask.py
in MaskRCNN/pytorch/maskrcnn_benchmark/structures
149 18
resnetd.py
in Segmentation/models
214 17
SyncND.py
in Classification/models
288 17
anchor_generator.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn
156 16
deconv.py
in MaskRCNN/pytorch/maskrcnn_benchmark/layers
362 15
main_imagenet.py
in Classification
534 15
deconv.py
in Classification/models
362 15
vgg_imagenet.py
in Classification/models
115 15
transforms.py
in Segmentation
69 14
rfnorm.py
in Classification/models
477 14
densenet.py
in Classification/models
110 13
resnet.py
in Classification/models
150 13
pnasnet.py
in Classification/models
136 13
preact_resnet.py
in Classification/models
135 13
deconv.py
in Segmentation/models/segmentation
256 12
Files With Long Lines (Top 20)

There are 48 files with lines longer than 120 characters. In total, there are 199 long lines.

File# lines# units# long lines
main.py
in Classification
366 - 34
SyncND.py
in Classification/models
288 17 15
simple.py
in Classification/models
123 6 12
rfnorm.py
in Classification/models
477 14 12
deconv.py
in MaskRCNN/pytorch/maskrcnn_benchmark/layers
362 15 9
deconv.py
in Classification/models
362 15 9
SyncND.py
in Segmentation/models/segmentation
141 7 7
resnext.py
in Classification/models
104 10 7
main_imagenet.py
in Classification
534 15 6
densenet.py
in Classification/models
110 13 6
resnet.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/backbone
469 20 5
deconv.py
in Segmentation/models/segmentation
256 12 5
arg_parser.py
in Classification
61 1 5
resnet_imagenet.py
in Classification/models
230 20 5
resnet.py
in Classification/models
150 13 5
roi_box_predictors.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/roi_heads/box_head
71 5 4
ROIAlign_cuda.cu
in MaskRCNN/pytorch/maskrcnn_benchmark/csrc/cuda
287 - 4
gen_cmd.py
in Classification
22 - 4
dpn.py
in Classification/models
108 8 4
rpn.py
in MaskRCNN/pytorch/maskrcnn_benchmark/modeling/rpn
96 7 3