in Classification/models/deconv.py [0:0]
def forward(self, x):
if x.numel()==0:
return x
N, C, H, W = x.shape
B = self.block
x=x.contiguous()
if self.norm_type=='l1norm':
x_norm=x.abs().mean(dim=(1,2,3),keepdim=True)
x = x/ (x_norm + self.eps)
elif self.norm_type=='layernorm':
x=self.layernorm(x)
if self.training:
self.counter+=1
frozen=self.freeze and (self.counter% (self.freeze_iter * 10) >self.freeze_iter)
if self.training and (not frozen):
# 1. im2col: N x cols x pixels -> N*pixles x cols
if self.kernel_size[0]>1:
X = torch.nn.functional.unfold(x, self.kernel_size,self.dilation,self.padding,self.sampling_stride).transpose(1, 2).contiguous()
else:
#channel wise
X = x.permute(0, 2, 3, 1).contiguous().view(-1, C)[::self.sampling_stride**2,:]
if self.groups==1:
# (C//B*N*pixels,k*k*B)
X = X.view(-1, self.num_features, C // B).transpose(1, 2).contiguous().view(-1, self.num_features)
else:
X=X.view(-1,X.shape[-1])
# 2. calculate mean,cov,cov_isqrt
X_mean = X.mean(0)
if self.groups==1:
M = X.shape[0]
XX_mean = X.t()@X/M
else:
M = X.shape[1]
XX_mean = X.transpose(1,2)@X/M
if self.sync:
process_group = self.process_group
world_size = 1
if not self.process_group:
process_group = torch.distributed.group.WORLD
if torch.distributed.is_initialized():
world_size = torch.distributed.get_world_size(process_group)
#sync once implementation:
sync_data=torch.cat([X_mean.view(-1),XX_mean.view(-1)],dim=0)
sync_data_list=[torch.empty_like(sync_data) for k in range(world_size)]
sync_data_list = diffdist.functional.all_gather(sync_data_list, sync_data)
sync_data=torch.stack(sync_data_list).mean(0)
X_mean=sync_data[:X_mean.numel()].view(X_mean.shape)
XX_mean=sync_data[X_mean.numel():].view(XX_mean.shape)
if self.groups==1:
Id = torch.eye(XX_mean.shape[1], dtype=X.dtype, device=X.device)
cov= XX_mean- X_mean.unsqueeze(1) @X_mean.unsqueeze(0)+self.eps*Id
cov_isqrt = isqrt_newton_schulz_autograd(cov, self.n_iter)
else:
Id = torch.eye(self.num_features, dtype=X.dtype, device=X.device).expand(self.groups, self.num_features, self.num_features)
cov= (XX_mean- (X_mean.unsqueeze(2)) @X_mean.unsqueeze(1))+self.eps*Id
cov_isqrt = isqrt_newton_schulz_autograd_batch(cov, self.n_iter)
# track stats for evaluation.
self.running_mean.mul_(1 - self.momentum)
self.running_mean.add_(X_mean.detach() * self.momentum)
self.running_cov_isqrt.mul_(1 - self.momentum)
self.running_cov_isqrt.add_(cov_isqrt.detach() * self.momentum)
else:
X_mean = self.running_mean
cov_isqrt = self.running_cov_isqrt
#3. S * X * D * W = (S * X) * (D * W)
if self.groups==1:
w = self.weight.view(-1, self.num_features, C // B).transpose(1, 2).contiguous().view(-1,self.num_features) @ cov_isqrt
b = self.bias - (w @ (X_mean.unsqueeze(1))).view(self.weight.shape[0], -1).sum(1)
w = w.view(-1, C // B, self.num_features).transpose(1, 2).contiguous()
else:
w = self.weight.view(C//B, -1,self.num_features)@cov_isqrt
b = self.bias - (w @ (X_mean.view( -1,self.num_features,1))).view(self.bias.shape)
w = w.view(self.weight.shape)
x= F.conv2d(x, w, b, self.stride, self.padding, self.dilation, self.groups)
return x