def convert_range_image_to_point_cloud()

in tools/waymo/converter.py [0:0]


    def convert_range_image_to_point_cloud(self,
                                           frame,
                                           range_images,
                                           camera_projections,
                                           range_image_top_pose,
                                           ri_index=0):
        """Convert range images to point cloud.
        Args:
          frame: open dataset frame
           range_images: A dict of {laser_name, [range_image_first_return,
             range_image_second_return]}.
           camera_projections: A dict of {laser_name,
             [camera_projection_from_first_return,
             camera_projection_from_second_return]}.
          range_image_top_pose: range image pixel pose for top lidar.
          ri_index: 0 for the first return, 1 for the second return.
        Returns:
          points: {[N, 3]} list of 3d lidar points of length 5 (number of lidars).
          cp_points: {[N, 6]} list of camera projections of length 5
            (number of lidars).
        """
        calibrations = sorted(frame.context.laser_calibrations, key=lambda c: c.name)
        points = []
        cp_points = []
        intensity = []

        frame_pose = tf.convert_to_tensor(
            value=np.reshape(np.array(frame.pose.transform), [4, 4]))
        # [H, W, 6]
        range_image_top_pose_tensor = tf.reshape(
            tf.convert_to_tensor(value=range_image_top_pose.data),
            range_image_top_pose.shape.dims)
        # [H, W, 3, 3]
        range_image_top_pose_tensor_rotation = transform_utils.get_rotation_matrix(
            range_image_top_pose_tensor[..., 0], range_image_top_pose_tensor[..., 1],
            range_image_top_pose_tensor[..., 2])
        range_image_top_pose_tensor_translation = range_image_top_pose_tensor[..., 3:]
        range_image_top_pose_tensor = transform_utils.get_transform(
            range_image_top_pose_tensor_rotation,
            range_image_top_pose_tensor_translation)
        for c in calibrations:
            range_image = range_images[c.name][ri_index]
            if len(c.beam_inclinations) == 0:  # pylint: disable=g-explicit-length-test
                beam_inclinations = range_image_utils.compute_inclination(
                    tf.constant([c.beam_inclination_min, c.beam_inclination_max]),
                    height=range_image.shape.dims[0])
            else:
                beam_inclinations = tf.constant(c.beam_inclinations)

            beam_inclinations = tf.reverse(beam_inclinations, axis=[-1])
            extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4])

            range_image_tensor = tf.reshape(
                tf.convert_to_tensor(value=range_image.data), range_image.shape.dims)
            pixel_pose_local = None
            frame_pose_local = None
            if c.name == dataset_pb2.LaserName.TOP:
                pixel_pose_local = range_image_top_pose_tensor
                pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0)
                frame_pose_local = tf.expand_dims(frame_pose, axis=0)
            range_image_mask = range_image_tensor[..., 0] > 0

            # No Label Zone
            if filter_no_label_zone_points:
                nlz_mask = range_image_tensor[..., 3] != 1.0  # 1.0: in NLZ
                # print(range_image_tensor[range_image_tensor[..., 3] == 1.0])
                range_image_mask = range_image_mask & nlz_mask

            range_image_cartesian = range_image_utils.extract_point_cloud_from_range_image(
                tf.expand_dims(range_image_tensor[..., 0], axis=0),
                tf.expand_dims(extrinsic, axis=0),
                tf.expand_dims(tf.convert_to_tensor(value=beam_inclinations), axis=0),
                pixel_pose=pixel_pose_local,
                frame_pose=frame_pose_local)

            range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0)
            points_tensor = tf.gather_nd(range_image_cartesian,
                                         tf.compat.v1.where(range_image_mask))

            cp = camera_projections[c.name][ri_index]
            cp_tensor = tf.reshape(tf.convert_to_tensor(value=cp.data), cp.shape.dims)
            cp_points_tensor = tf.gather_nd(cp_tensor,
                                            tf.compat.v1.where(range_image_mask))
            points.append(points_tensor.numpy())
            cp_points.append(cp_points_tensor.numpy())

            intensity_tensor = tf.gather_nd(range_image_tensor,
                                            tf.where(range_image_mask))
            intensity.append(intensity_tensor.numpy()[:, 1])

        return points, cp_points, intensity