in tools/kitti_eval/evaluate_object_3d_offline_ap11.cpp [458:616]
tPrData computeStatistics(CLASSES current_class, const vector<tGroundtruth> >,
const vector<tDetection> &det, const vector<tGroundtruth> &dc,
const vector<int32_t> &ignored_gt, const vector<int32_t> &ignored_det,
bool compute_fp, double (*boxoverlap)(tDetection, tGroundtruth, int32_t),
METRIC metric, bool compute_aos=false, double thresh=0, bool debug=false){
tPrData stat = tPrData();
const double NO_DETECTION = -10000000;
vector<double> delta; // holds angular difference for TPs (needed for AOS evaluation)
vector<bool> assigned_detection; // holds wether a detection was assigned to a valid or ignored ground truth
assigned_detection.assign(det.size(), false);
vector<bool> ignored_threshold;
ignored_threshold.assign(det.size(), false); // holds detections with a threshold lower than thresh if FP are computed
// detections with a low score are ignored for computing precision (needs FP)
if(compute_fp)
for(int32_t i=0; i<det.size(); i++)
if(det[i].thresh<thresh)
ignored_threshold[i] = true;
// evaluate all ground truth boxes
for(int32_t i=0; i<gt.size(); i++){
// this ground truth is not of the current or a neighboring class and therefore ignored
if(ignored_gt[i]==-1)
continue;
/*=======================================================================
find candidates (overlap with ground truth > 0.5) (logical len(det))
=======================================================================*/
int32_t det_idx = -1;
double valid_detection = NO_DETECTION;
double max_overlap = 0;
// search for a possible detection
bool assigned_ignored_det = false;
for(int32_t j=0; j<det.size(); j++){
// detections not of the current class, already assigned or with a low threshold are ignored
if(ignored_det[j]==-1)
continue;
if(assigned_detection[j])
continue;
if(ignored_threshold[j])
continue;
// find the maximum score for the candidates and get idx of respective detection
double overlap = boxoverlap(det[j], gt[i], -1);
// for computing recall thresholds, the candidate with highest score is considered
if(!compute_fp && overlap>MIN_OVERLAP[metric][current_class] && det[j].thresh>valid_detection){
det_idx = j;
valid_detection = det[j].thresh;
}
// for computing pr curve values, the candidate with the greatest overlap is considered
// if the greatest overlap is an ignored detection (min_height), the overlapping detection is used
else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && (overlap>max_overlap || assigned_ignored_det) && ignored_det[j]==0){
max_overlap = overlap;
det_idx = j;
valid_detection = 1;
assigned_ignored_det = false;
}
else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && valid_detection==NO_DETECTION && ignored_det[j]==1){
det_idx = j;
valid_detection = 1;
assigned_ignored_det = true;
}
}
/*=======================================================================
compute TP, FP and FN
=======================================================================*/
// nothing was assigned to this valid ground truth
if(valid_detection==NO_DETECTION && ignored_gt[i]==0) {
stat.fn++;
}
// only evaluate valid ground truth <=> detection assignments (considering difficulty level)
else if(valid_detection!=NO_DETECTION && (ignored_gt[i]==1 || ignored_det[det_idx]==1))
assigned_detection[det_idx] = true;
// found a valid true positive
else if(valid_detection!=NO_DETECTION){
// write highest score to threshold vector
stat.tp++;
stat.v.push_back(det[det_idx].thresh);
// compute angular difference of detection and ground truth if valid detection orientation was provided
if(compute_aos)
delta.push_back(gt[i].box.alpha - det[det_idx].box.alpha);
// clean up
assigned_detection[det_idx] = true;
}
}
// if FP are requested, consider stuff area
if(compute_fp){
// count fp
for(int32_t i=0; i<det.size(); i++){
// count false positives if required (height smaller than required is ignored (ignored_det==1)
if(!(assigned_detection[i] || ignored_det[i]==-1 || ignored_det[i]==1 || ignored_threshold[i]))
stat.fp++;
}
// do not consider detections overlapping with stuff area
int32_t nstuff = 0;
for(int32_t i=0; i<dc.size(); i++){
for(int32_t j=0; j<det.size(); j++){
// detections not of the current class, already assigned, with a low threshold or a low minimum height are ignored
if(assigned_detection[j])
continue;
if(ignored_det[j]==-1 || ignored_det[j]==1)
continue;
if(ignored_threshold[j])
continue;
// compute overlap and assign to stuff area, if overlap exceeds class specific value
double overlap = boxoverlap(det[j], dc[i], 0);
if(overlap>MIN_OVERLAP[metric][current_class]){
assigned_detection[j] = true;
nstuff++;
}
}
}
// FP = no. of all not to ground truth assigned detections - detections assigned to stuff areas
stat.fp -= nstuff;
// if all orientation values are valid, the AOS is computed
if(compute_aos){
vector<double> tmp;
// FP have a similarity of 0, for all TP compute AOS
tmp.assign(stat.fp, 0);
for(int32_t i=0; i<delta.size(); i++)
tmp.push_back((1.0+cos(delta[i]))/2.0);
// be sure, that all orientation deltas are computed
assert(tmp.size()==stat.fp+stat.tp);
assert(delta.size()==stat.tp);
// get the mean orientation similarity for this image
if(stat.tp>0 || stat.fp>0)
stat.similarity = accumulate(tmp.begin(), tmp.end(), 0.0);
// there was neither a FP nor a TP, so the similarity is ignored in the evaluation
else
stat.similarity = -1;
}
}
return stat;
}