in calculate_pr.py [0:0]
def main(pred_file, test_file):
squad_nlu_test = json.load(open(test_file))
test_pred = json.load(open(pred_file))
labels_val = []
labels_pred_val = []
words = []
true_intents = []
pred_intents = []
for rec in squad_nlu_test['data'][0]['paragraphs']:
slot_true, slot_pred, tokens = qanlu_rec_to_conll(rec, test_pred)
labels_val.append(slot_true)
labels_pred_val.append(slot_pred)
words.append(tokens)
# Intent
true_intent_index, pred_intent_index = get_rec_intent(rec, test_pred)
true_intents.append(true_intent_index)
pred_intents.append(pred_intent_index)
con_dict = conlleval(labels_pred_val, labels_val, words, 'measure.txt')
intent_acc = sklearn.metrics.accuracy_score(true_intents, pred_intents)
print("Intent Accuracy: %.4f" % intent_acc)
print('Precision = {}, Recall = {}, F1 = {}'.format(con_dict['r'], con_dict['p'], con_dict['f1']))