in solver/self_play_qgen_vilbert.py [0:0]
def validate(self, specified_set):
self.model.eval()
total_hit = 0
total_cnt = 0
out_file = open('{}.txt'.format(self.exp_name), 'w')
out_file.write('game_id|pred_obj|answer_obj|turn_id|question|answer|answer_confidence\n')
for val_step, data in enumerate(specified_set):
game, qgen_img_feats, qgen_bboxs, tgt_cat, tgt_bbox, cats, bboxs, bboxs_mask, label, qs, q_len = self.fetch_data(data)
with torch.no_grad():
pred, dialog, q_log, a_log, a_conf_log = self.model.play(
qgen_img_feats, qgen_bboxs, tgt_cat, tgt_bbox, cats, bboxs, bboxs_mask,
self.tokenizer.sos_id, self.tokenizer.pad_id,
self.tokenizer.eoq_id, self.tokenizer.eod_id,
self.answer2id, self.answer2token,
max_q_len=20, greedy=True, max_turns=5, # changed greedy = False for diversity
answer_as_sos=self.config['model']['qgen']['answer_as_sos']
)
for b in range(pred.size(0)):
out_prefix = "{}|{}|{}".format(game[b].id, pred[b].argmax(dim=-1).item(), label[b].item())
for t in range(len(q_log[b])):
out_str = out_prefix + "|{}|{}|".format(t, self.tokenizer.decode(q_log[b][t].tolist()))
# if t != len(q_log[b])-1:
if len(a_log[b]) > t:
out_str += "{}|{:.3f}".format(self.tokenizer.decode(a_log[b][t].tolist()), a_conf_log[b][t])
out_file.write(out_str+'\n')
total_hit += (pred.argmax(dim=-1) == label).sum().item()
total_cnt += pred.size(0)
# if (val_step == 0) or ((val_step+1) % self._progress_step == 0):
self.progress("Dev stat. ({}/{}) | Acc. - {:.3f}".format(
val_step+1, len(specified_set), total_hit/float(total_cnt)))
# Log
if self.mode == 'train':
pass
if self.mode == 'train':
score = -avg_loss
if score > self.best_score:
self.save_checkpoint('best.pth', score)
self.best_score = score
self.model.train()
self.verbose(["Val stat. @ step {} | Acc. - {:.3f}"
.format(self.step, total_hit / float(total_cnt))])
out_file.close()