in utils_data.py [0:0]
def numeric_sparse(queries, skip_idxs, k, T, epsilon, sens, delta=0):
count = 0
idxs = onp.array([], onp.int)
pos = 0
sigma = compute_sigma(k, epsilon, sens, delta)
T_hat = T + onp.random.laplace(loc=0, scale=sigma)
while pos < len(queries) and len(idxs) < k:
if pos in skip_idxs:
pos += 1
continue
v_i = onp.random.laplace(loc=0, scale=2 * sigma)
if queries[pos] + v_i >= T_hat:
idxs = onp.append(idxs, pos)
count += 1
T_hat = T + onp.random.laplace(loc=0, scale=sigma)
pos += 1
return idxs