in tools/train_net.py [0:0]
def train(cfg, train_dir, local_rank, distributed, logger):
# build model
model = build_siammot(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
# Initialize mixed-precision training
use_mixed_precision = cfg.DTYPE == "float16"
amp_opt_level = 'O1' if use_mixed_precision else 'O0'
model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
broadcast_buffers=False, find_unused_parameters=True
)
arguments = {}
arguments["iteration"] = 0
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(cfg, model, optimizer,
scheduler, train_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = build_train_data_loader(
cfg,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
tensorboard_writer = TensorboardWriter(cfg, train_dir)
do_train(model, data_loader, optimizer, scheduler,
checkpointer, device, checkpoint_period, arguments,
logger, tensorboard_writer
)
return model