in siammot/engine/tensorboard_writer.py [0:0]
def __call__(self, iter, loss, loss_dict, images, targets):
"""
:param iter:
:param loss_dict:
:param images:
:return:
"""
if get_world_size() < 2 or dist.get_rank() == 0:
self.add_scalar('loss', loss.detach().cpu().numpy(), iter)
for (_loss_key, _val) in loss_dict.items():
self.add_scalar(_loss_key, _val.detach().cpu().numpy(), iter)
# write down images / ground truths every 500 images
if iter == 1 or iter % 500 == 0:
show_images = images.tensors
show_images = show_images.mul_(self.model_std[None, :, None, None]).\
add_(self.model_mean[None, :, None, None])
# From RGB255 to BGR255
if self.image_to_bgr255:
show_images = show_images[:, [2, 1, 0], :, :] / 255.
# Detection ground truth
merged_image, bbox_in_merged_image = self.images_with_boxes(show_images, targets)
self.add_image_with_boxes('ground truth', merged_image, bbox_in_merged_image, iter)