def forward()

in siammot/modelling/backbone/dla.py [0:0]


    def forward(self, x, residual=None):
        if residual is None:
            residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        spx = torch.split(out, self.width, 1)
        spo = []
        for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
            sp = spx[i] if i == 0 or self.is_first else sp + spx[i]
            sp = conv(sp)
            sp = bn(sp)
            sp = self.relu(sp)
            spo.append(sp)
        if self.scale > 1 :
            spo.append(self.pool(spx[-1]) if self.is_first else spx[-1])
        out = torch.cat(spo, 1)

        out = self.conv3(out)
        out = self.bn3(out)

        out += residual
        out = self.relu(out)

        return out