in metrics/bert_score.py [0:0]
def main():
start_time = time.time()
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
)
parser.add_argument('--fp16', default=True,
help='Run in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument(
"--model_type", type=str, default='bert', help="The model architecture to be trained or fine-tuned.",
)
parser.add_argument(
"--vocab_file",
type=str,
required=True,
help="The vocab file.",
)
parser.add_argument(
"--event_type",
type=str,
required=True,
help="The event type.",
choices=['magenta', 'newevent']
)
parser.add_argument(
"--len_tokens_evaluated",
type=int,
default=2048,
help="Total max number of tokens to be evaluated.",
)
args = parser.parse_args()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.model_name_or_path, cache_dir=None)
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=None)
if args.vocab_file:
tokenizer.build_vocab_file(args.vocab_file, event_type=args.event_type)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=None,
)
if args.fp16:
model = model.half()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
run_score(model, tokenizer, args.len_tokens_evaluated)
print("--- %s seconds ---" % (time.time() - start_time))