def evaluate()

in BERT/main.py [0:0]


def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)

    # Note that DistributedSampler samples randomly

    def collate(examples: List[torch.Tensor]):
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
    )

    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    model.eval()

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)

        with torch.no_grad():
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

    result = {"loss": eval_loss, "perplexity": perplexity}

    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
            print("Evaluation:   %s = %s".format(key, str(result[key])))

    return result