def step()

in model/lamb.py [0:0]


    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Lamb does not support sparse gradients.')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                # Decay the first and second moment running average coefficient
                # m_t
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                # v_t
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)

                # Paper v3 does not use debiasing.
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
                # Apply bias to lr to avoid broadcast.
                step_size = group['lr']  # * math.sqrt(bias_correction2) / bias_correction1

                weight_norm = p.data.norm(p=2).clamp_(0, 10)

                adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
                if group['weight_decay'] != 0:
                    adam_step.add_(group['weight_decay'], p.data)

                adam_norm = adam_step.norm(p=2)

                if weight_norm == 0.0 or adam_norm == 0.0:
                    trust_ratio = 1
                else:
                    trust_ratio = weight_norm / (adam_norm + group['eps'])

                state['weight_norm'] = weight_norm
                state['adam_norm'] = adam_norm
                state['trust_ratio'] = trust_ratio
                if self.adam:
                    trust_ratio = 1

                p.data.add_(-step_size * trust_ratio, adam_step)

        return loss