in AWSCognitoIdentityProvider/Internal/JKBigInteger/LibTomMath/tommath.c [6658:6722]
int aws_mp_is_square(aws_mp_int *arg, int *ret)
{
int res;
aws_mp_digit c;
aws_mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = AWS_MP_NO;
if (arg->sign == AWS_MP_NEG) {
return AWS_MP_VAL;
}
/* digits used? (TSD) */
if (arg->used == 0) {
return AWS_MP_OKAY;
}
/* First check mod 128 (suppose that AWS_DIGIT_BIT is at least 7) */
if (rem_128[127 & AWS_JKTM_DIGIT(arg,0)] == 1) {
return AWS_MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = aws_mp_mod_d(arg, 105, &c)) != AWS_MP_OKAY) {
return res;
}
if (rem_105[c] == 1) {
return AWS_MP_OKAY;
}
if ((res = aws_mp_init_set_int(&t, 11L * 13L * 17L * 19L * 23L * 29L * 31L)) != AWS_MP_OKAY) {
return res;
}
if ((res = aws_mp_mod(arg, &t, &t)) != AWS_MP_OKAY) {
goto ERR;
}
r = aws_mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to AWS_MP_OKAY from the aws_mp_mod call
*/
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = aws_mp_sqrt(arg, &t)) != AWS_MP_OKAY) {
goto ERR;
}
if ((res = aws_mp_sqr(&t, &t)) != AWS_MP_OKAY) {
goto ERR;
}
*ret = (aws_mp_cmp_mag(&t, arg) == AWS_MP_EQ) ? AWS_MP_YES : AWS_MP_NO;
ERR:
aws_mp_clear(&t);
return res;
}