in AWSCognitoIdentityProvider/Internal/JKBigInteger/LibTomMath/tommath.c [4308:4592]
int aws_mp_exptmod_fast(aws_mp_int *G, aws_mp_int *X, aws_mp_int *P, aws_mp_int *Y, int redmode)
{
aws_mp_int M[TAB_SIZE], res;
aws_mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* use a pointer to the reduction algorithm. This allows us to use
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
int (*redux)(aws_mp_int *, aws_mp_int *,aws_mp_digit);
/* find window size */
x = aws_mp_count_bits(X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
#ifdef AWS_MP_LOW_MEM
if (winsize > 5) {
winsize = 5;
}
#endif
/* init M array */
/* init first cell */
if ((err = aws_mp_init(&M[1])) != AWS_MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = aws_mp_init(&M[x])) != AWS_MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
aws_mp_clear(&M[y]);
}
aws_mp_clear(&M[1]);
return err;
}
}
/* determine and setup reduction code */
if (redmode == 0) {
#ifdef AWS_BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */
if ((err = aws_mp_montgomery_setup(P, &mp)) != AWS_MP_OKAY) {
goto LBL_M;
}
#else
err = AWS_MP_VAL;
goto LBL_M;
#endif
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef AWS_BN_FAST_MP_MONTGOMERY_REDUCE_C
if (((P->used * 2 + 1) < AWS_MP_WARRAY) &&
P->used < (1 << ((CHAR_BIT * sizeof (aws_mp_word)) - (2 * AWS_DIGIT_BIT)))) {
redux = aws_fast_mp_montgomery_reduce;
} else
#endif
{
#ifdef AWS_BN_MP_MONTGOMERY_REDUCE_C
/* use slower baseline Montgomery method */
redux = aws_mp_montgomery_reduce;
#else
err = AWS_MP_VAL;
goto LBL_M;
#endif
}
} else if (redmode == 1) {
#if defined(AWS_BN_MP_DR_SETUP_C) && defined(AWS_BN_MP_DR_REDUCE_C)
/* setup DR reduction for moduli of the form B**k - b */
aws_mp_dr_setup(P, &mp);
redux = aws_mp_dr_reduce;
#else
err = AWS_MP_VAL;
goto LBL_M;
#endif
} else {
#if defined(AWS_BN_MP_REDUCE_2K_SETUP_C) && defined(AWS_BN_MP_REDUCE_2K_C)
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = aws_mp_reduce_2k_setup(P, &mp)) != AWS_MP_OKAY) {
goto LBL_M;
}
redux = aws_mp_reduce_2k;
#else
err = AWS_MP_VAL;
goto LBL_M;
#endif
}
/* setup result */
if ((err = aws_mp_init(&res)) != AWS_MP_OKAY) {
goto LBL_M;
}
/* create M table
*
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
if (redmode == 0) {
#ifdef AWS_BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* now we need R mod m */
if ((err = aws_mp_montgomery_calc_normalization(&res, P)) != AWS_MP_OKAY) {
goto LBL_RES;
}
#else
err = AWS_MP_VAL;
goto LBL_RES;
#endif
/* now set M[1] to G * R mod m */
if ((err = aws_mp_mulmod(G, &res, P, &M[1])) != AWS_MP_OKAY) {
goto LBL_RES;
}
} else {
aws_mp_set(&res, 1);
if ((err = aws_mp_mod(G, P, &M[1])) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = aws_mp_copy(&M[1], &M[1 << (winsize - 1)])) != AWS_MP_OKAY) {
goto LBL_RES;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = aws_mp_sqr(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = aws_mp_mul(&M[x - 1], &M[1], &M[x])) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&M[x], P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)AWS_DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (aws_mp_digit)(buf >> (AWS_DIGIT_BIT - 1)) & 1;
buf <<= (aws_mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = aws_mp_sqr(&res, &res)) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = aws_mp_sqr(&res, &res)) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
/* then multiply */
if ((err = aws_mp_mul(&res, &M[bitbuf], &res)) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = aws_mp_sqr(&res, &res)) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = aws_mp_mul(&res, &M[1], &res)) != AWS_MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
}
}
if (redmode == 0) {
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
if ((err = redux(&res, P, mp)) != AWS_MP_OKAY) {
goto LBL_RES;
}
}
/* swap res with Y */
aws_mp_exch(&res, Y);
err = AWS_MP_OKAY;
LBL_RES:
aws_mp_clear(&res);
LBL_M:
aws_mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
aws_mp_clear(&M[x]);
}
return err;
}