def optimize_tf_model()

in model_optimizer_pkg/model_optimizer_pkg/model_optimizer_node.py [0:0]


    def optimize_tf_model(self,
                          model_name,
                          model_metadata_sensors,
                          training_algorithm,
                          input_width,
                          input_height,
                          lidar_channels,
                          aux_inputs={}):
        """Helper function to run Intel"s model optimizer for DeepRacer tensorflow model.

        Args:
            model_name (str): Model prefix, should be the same in the weight and symbol file.
            model_metadata_sensors (list): List of sensor input types(int) for all the sensors
                                           with which the model was trained.
            training_algorithm (int): Training algorithm key(int) for the algorithm with which
                                      the model was trained.
            input_width (int): Width of the input image to the inference engine.
            input_height (int): Height of the input image to the inference engine.
            lidar_channels (int): Number of LiDAR values that with which the LiDAR head of
                                  the model was trained.
            aux_inputs (dict, optional): Dictionary of auxiliary options for the model optimizer.
                                         Defaults to {}.

        Raises:
            Exception: Custom exception if the input height or width is less than 1.

        Returns:
            tuple: Tuple whose first value is the error code and second value
                   is a string to the location of the converted model if any.
        """
        if input_width < 1 or input_height < 1:
            raise Exception("Invalid height or width")
        # Convert the API information into Intel model optimizer cli commands.
        common_params = self.convert_to_mo_cli(model_name,
                                               model_metadata_sensors,
                                               training_algorithm,
                                               input_width,
                                               input_height,
                                               lidar_channels,
                                               aux_inputs)
        # Tensor Flow specific parameters.
        tf_params = {"--input_model_is_text": "",
                     "--offload_unsupported_operations_to_tf": "",
                     "--tensorflow_subgraph_patterns": "",
                     "-tensorflow_operation_patterns": "",
                     "--tensorflow_custom_operations_config_update": "",
                     "--tensorflow_use_custom_operations_config": ""}
        # Add the correct file suffix.
        common_params[constants.MOKeys.MODEL_PATH] += ".pbtxt" if "--input_model_is_text" in aux_inputs else ".pb"
        return self.run_optimizer("mo_tf.py", common_params,
                                  self.set_platform_param(tf_params, aux_inputs))