in assets/functions/ml_pipeline/load_pipeline_parameter/app.py [0:0]
def lambda_handler(event, context):
if 'train_model' in event:
train_model = event['train_model']
else:
train_model = False
if train_model:
unique_id = str(uuid.uuid4())
model_name = "model-{}".format(unique_id)
job_name = "training-job-{}".format(unique_id)
write_config("ModelName", model_name)
write_config("Training_job_name", job_name)
else:
model_name = get_config("ModelName")
job_name = get_config("Training_job_name")
parameter = {
"Data_start": get_config("Data_start"),
"Data_end": get_config("Data_end"),
"Forecast_period": int(get_config("Forecast_period")),
"Training_samples": int(get_config("Training_samples")),
"Training_instance_type": get_config("Training_instance_type"),
"Endpoint_instance_type": get_config("Endpoint_instance_type"),
"Meter_start": int(get_config("Meter_start")),
"Meter_end": int(get_config("Meter_end")),
"Batch_size": int(get_config("Batch_size")),
"ML_endpoint_name": get_config("ML_endpoint_name"),
"ModelName": model_name,
"Training_job_name": job_name
}
return {
**parameter,
**event
}