in src/detectEntities.py [0:0]
def lambda_handler(event, context):
s3 = boto3.client('s3')
s3_resource = boto3.resource('s3')
comprehend = boto3.client('comprehend')
t_prefix = 'quicksight/data/entity'
paginator = s3.get_paginator('list_objects_v2')
pages = paginator.paginate(Bucket=os.environ['entityDetectionBucket'], Prefix='comprehendInput/')
tempcols = ['Type', 'Score']
df_temp = pd.DataFrame(columns=tempcols)
cols = ['transcript_name', 'entity_type']
df_ent = pd.DataFrame(columns=cols)
comprehendEndpoint = comprehend.list_endpoints(
Filter={
'Status': 'IN_SERVICE',
}
)
for item in comprehendEndpoint.get('EndpointPropertiesList'):
if 'entity-recognizer-endpoint' in item['EndpointArn']:
endpointArn = item['EndpointArn']
for page in pages:
for obj in page['Contents']:
transcript_file_name = obj['Key'].split('/')[1]
temp = s3_resource.Object(os.environ['entityDetectionBucket'], obj['Key'])
transcript_content = temp.get()['Body'].read().decode('utf-8')
transcript_truncated = transcript_content[500:1800]
response = comprehend.detect_entities(Text=transcript_truncated, LanguageCode='en', EndpointArn=endpointArn)
df_temp = pd.DataFrame(columns=tempcols)
for ent in response['Entities']:
df_temp.loc[len(df_temp.index)] = [ent['Type'],ent['Score']]
if len(df_temp) > 0:
entity = df_temp.iloc[df_temp.Score.argmax(), 0:2]['Type']
else:
entity = 'No entities'
df_ent.loc[len(df_ent.index)] = [transcript_file_name.strip('en-'),entity]
wr.s3.to_csv(df_ent, path='s3://' + os.environ['entityDetectionBucket'] + '/' + t_prefix + '/' + 'entities.csv')