in src/startSentimentDetection.py [0:0]
def lambda_handler(event, context):
client = boto3.client('comprehend')
inprefix = 'comprehendInput'
outprefix = 'quicksight/temp/insights'
comprehend = boto3.client('comprehend')
s3 = boto3.client('s3')
s3_resource = boto3.resource('s3')
paginator = s3.get_paginator('list_objects_v2')
pages = paginator.paginate(Bucket=os.environ['ComprehendBucket'], Prefix=inprefix)
job_name_list = []
t_prefix = 'quicksight/data/sentiment'
cols = ['transcript_name', 'sentiment']
df_sent = pd.DataFrame(columns=cols)
for page in pages:
for obj in page['Contents']:
transcript_file_name = obj['Key'].split('/')[1]
temp = s3_resource.Object(os.environ['ComprehendBucket'], obj['Key'])
transcript_contents = temp.get()['Body'].read().decode('utf-8')
response = comprehend.detect_sentiment(Text=transcript_contents, LanguageCode='en')
df_sent.loc[len(df_sent.index)] = [transcript_file_name.strip('en-').strip('.txt'),response['Sentiment']]
wr.s3.to_csv(df_sent, path='s3://' + os.environ['ComprehendBucket'] + '/' + t_prefix + '/' + 'sentiment.csv')