aws-samples / algorithmic-trading
Conditional Complexity

The distribution of complexity of units (measured with McCabe index).

Intro
  • Conditional complexity (also called cyclomatic complexity) is a term used to measure the complexity of software. The term refers to the number of possible paths through a program function. A higher value ofter means higher maintenance and testing costs (infosecinstitute.com).
  • Conditional complexity is calculated by counting all conditions in the program that can affect the execution path (e.g. if statement, loops, switches, and/or operators, try and catch blocks...).
  • Conditional complexity is measured at the unit level (methods, functions...).
  • Units are classified in four categories based on the measured McCabe index: 1-5 (simple units), 6-10 (medium complex units), 11-25 (complex units), 26+ (very complex units).
Learn more...
Conditional Complexity Overall
  • There are 55 units with 556 lines of code in units (33.5% of code).
    • 0 very complex units (0 lines of code)
    • 0 complex units (0 lines of code)
    • 2 medium complex units (80 lines of code)
    • 0 simple units (0 lines of code)
    • 53 very simple units (476 lines of code)
0% | 0% | 14% | 0% | 85%
Legend:
51+
26-50
11-25
6-10
1-5
Alternative Visuals
Conditional Complexity per Extension
51+
26-50
11-25
6-10
1-5
py0% | 0% | 14% | 0% | 85%
Conditional Complexity per Logical Component
primary logical decomposition
51+
26-50
11-25
6-10
1-5
4_Kinesis/model0% | 0% | 16% | 0% | 83%
2_Strategies/model0% | 0% | 16% | 0% | 83%
3_Models/model0% | 0% | 0% | 0% | 100%
1_Data0% | 0% | 0% | 0% | 100%
Most Complex Units
Top 20 most complex units
Unit# linesMcCabe index# params
def __init__()
in 4_Kinesis/model/algo_sim_feed.py
40 11 2
def __init__()
in 2_Strategies/model/algo_sim_feed.py
40 11 2
def submit()
in 4_Kinesis/model/algo_base.py
25 4 1
def next()
in 4_Kinesis/model/algo_base.py
11 4 1
def pull()
in 4_Kinesis/model/algo_live_feed.py
29 4 1
def submit()
in 2_Strategies/model/algo_base.py
25 4 1
def next()
in 2_Strategies/model/algo_base.py
11 4 1
def pull()
in 2_Strategies/model/algo_live_feed.py
29 4 1
def save_stock_data()
in 1_Data/data_prep.py
19 3 3
def performance()
in 4_Kinesis/model/algo_base.py
36 3 1
def notify_order()
in 4_Kinesis/model/algo_base.py
10 3 2
def _load()
in 4_Kinesis/model/algo_live_feed.py
7 3 1
def performance()
in 2_Strategies/model/algo_base.py
36 3 1
def notify_order()
in 2_Strategies/model/algo_base.py
10 3 2
def _load()
in 2_Strategies/model/algo_live_feed.py
7 3 1
def read_stock_history()
in 1_Data/data_prep.py
6 2 1
def get_model()
in 4_Kinesis/model/predictor.py
5 2 1
def ping()
in 4_Kinesis/model/predictor.py
7 2 0
def _load()
in 4_Kinesis/model/algo_sim_feed.py
15 2 1
def __init__()
in 4_Kinesis/model/algo_live_feed.py
7 2 2