source/containers/face-comparison/recognizer/predictor.py [225:241]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    status = 200 if health else 404
    return flask.Response(response='\n', status=status, mimetype='application/json')


@app.route('/invocations', methods=['POST'])
def transformation():
    """
    Do an inference on a single batch of data. In this sample server, we take image data as base64 formation,
    decode it for internal use and then convert the predictions to json format

    :return:
    """
    t_start = time.time()

    if flask.request.content_type == 'application/json':
        request_body = flask.request.data.decode('utf-8')
        request_body = json.loads(request_body)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



source/containers/face-detection/detector/predictor.py [81:97]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    status = 200 if health else 404
    return flask.Response(response='\n', status=status, mimetype='application/json')


@app.route('/invocations', methods=['POST'])
def transformation():
    """
    Do an inference on a single batch of data. In this sample server, we take image data as base64 formation,
    decode it for internal use and then convert the predictions to json format

    :return:
    """
    t_start = time.time()

    if flask.request.content_type == 'application/json':
        request_body = flask.request.data.decode('utf-8')
        request_body = json.loads(request_body)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



