in source/containers/face-comparison/recognizer/predictor.py [0:0]
def transformation():
"""
Do an inference on a single batch of data. In this sample server, we take image data as base64 formation,
decode it for internal use and then convert the predictions to json format
:return:
"""
t_start = time.time()
if flask.request.content_type == 'application/json':
request_body = flask.request.data.decode('utf-8')
request_body = json.loads(request_body)
source_image_base64 = request_body['source_image_bytes']
target_image_base64 = request_body['target_image_bytes']
else:
return flask.Response(
response='Face comparison only supports application/json data',
status=415,
mimetype='text/plain')
# inference
body = FaceRecognizerService.predict(
source_image_base64,
target_image_base64,
min_confidence_thresh=0.65
)
t_end = time.time()
print('Time consumption = {} second'.format(t_end - t_start))
print('Response = {}'.format(body))
return flask.Response(response=json.dumps(body), status=200, mimetype='application/json')