def handler()

in source/lambda/main.py [0:0]


def handler(event, context):
    # parse environment parameters
    sagemaker_endpoint_name = os.environ['SAGEMAKER_ENDPOINT_NAME']
    service_ype = os.environ['SERVICE_TYPE']
    deploy_model_name = os.environ['OBJECT_DETECTOR_MODEL_NAME']
    events_s3_bucket_name = os.environ['EVENTS_S3_BUCKET_NAME']
    request_events_snapshot_enabled = os.environ['REQUEST_EVENTS_SNAPSHOT_ENABLED']

    # object detector short size mapping look-up table
    short_size_lut = {
        'ssd_512_resnet50_v1_coco': 512,
        'yolo3_darknet53_coco': 416,
        'yolo3_mobilenet1.0_coco': 416,
        'faster_rcnn_fpn_resnet101_v1d_coco': 600
    }
    short_size = short_size_lut.get(deploy_model_name)

    if service_ype in ['face-detection', 'body-detection']:
        request = json.loads(event['body'])
        image_base64_enc = request['image_base64_enc']
        timestamp = request['timestamp']
        request_id = str(request['request_id'])

        # invoke Sagemaker endpoint to predict the skeleton
        sm_endpoint_response = sagemaker_runtime_client.invoke_endpoint(
            EndpointName=sagemaker_endpoint_name,
            ContentType='application/json',
            Accept='application/json',
            Body=json.dumps({
                'image_bytes': image_base64_enc,
                'short_size': short_size,
            }),
        )

        detection_str = sm_endpoint_response['Body'].read().decode()

        # return response
        response = {
            'statusCode': 200,
            'body': detection_str,
            "headers":
                {
                    "Content-Type": "application/json",
                    'Access-Control-Allow-Headers': 'Content-Type',
                    'Access-Control-Allow-Origin': '*',
                    'Access-Control-Allow-Methods': 'OPTIONS,POST,GET',
                }
        }

        # write input images and response to S3 bucket
        if request_events_snapshot_enabled == 'Yes':
            save_bucket_prefix = time.strftime('%Y-%m-%d', time.localtime(time.time()))
            image_data = base64.b64decode(image_base64_enc)
            dump_input_image_response = s3.put_object(
                Bucket=events_s3_bucket_name,
                Key=os.path.join(save_bucket_prefix, request_id + '.png'),
                Body=image_data)

            dump_detection_result_response = s3.put_object(
                Bucket=events_s3_bucket_name,
                Key=os.path.join(save_bucket_prefix, request_id + '.json'),
                Body=json.dumps(response))

        return response

    elif service_ype == 'face-comparison':
        request = json.loads(event['body'])
        source_image_base64_enc = request['source_image']
        target_image_base64_enc = request['target_image']
        timestamp = request['timestamp']
        request_id = str(request['request_id'])

        # invoke Sagemaker endpoint to predict the skeleton
        sm_endpoint_response = sagemaker_runtime_client.invoke_endpoint(
            EndpointName=sagemaker_endpoint_name,
            ContentType='application/json',
            Accept='application/json',
            Body=json.dumps({
                'source_image_bytes': source_image_base64_enc,
                'target_image_bytes': target_image_base64_enc,
            }),
        )

        face_comparison_result_str = sm_endpoint_response['Body'].read().decode()

        # return response
        response = {
            'statusCode': 200,
            'body': face_comparison_result_str,
            "headers":
                {
                    "Content-Type": "application/json",
                    'Access-Control-Allow-Headers': 'Content-Type',
                    'Access-Control-Allow-Origin': '*',
                    'Access-Control-Allow-Methods': 'OPTIONS,POST,GET',
                }
        }

        # write input images and response to S3 bucket
        if request_events_snapshot_enabled == 'Yes':
            save_bucket_prefix = time.strftime('%Y-%m-%d', time.localtime(time.time()))
            source_image_data = base64.b64decode(source_image_base64_enc)
            target_image_data = base64.b64decode(target_image_base64_enc)

            dump_source_image_response = s3.put_object(
                Bucket=events_s3_bucket_name,
                Key=os.path.join(save_bucket_prefix, request_id + '_source.png'),
                Body=source_image_data)

            dump_target_image_response = s3.put_object(
                Bucket=events_s3_bucket_name,
                Key=os.path.join(save_bucket_prefix, request_id + '_target.png'),
                Body=target_image_data)

            dump_recognition_result_response = s3.put_object(
                Bucket=events_s3_bucket_name,
                Key=os.path.join(save_bucket_prefix, request_id + '.json'),
                Body=json.dumps(response))

        return response