in src/lookoutequipment/plot.py [0:0]
def _extract_series(self, tag_name):
"""
This private method extracts the time series data for a given tag and
make it available as ``pandas.DataFrame``. Each timeseries will consist
on a single column DataFrame with a column name equal to the tag name
and the timestamp column is used as the DateTimeIndex. Resampling and
forward fill will also happen in this method.
Parameters:
tag_name (string):
The name of the tag to extract
"""
if self._format == 'timeseries':
df = self._extract_series_timeseries(tag_name)
elif self._format == 'tabular':
df = self._extract_series_tabular(tag_name)
df = self._preprocess_timeseries(df)
self._signals_data.append(df)
del df
start_date = np.min(self._signals_data[-1].index)
end_date = np.max(self._signals_data[-1].index)
if self._start_date is None:
self._start_date = start_date
elif self._start_date > start_date:
self._start_date = start_date
if self._end_date is None:
self._end_date = end_date
elif self._end_date < end_date:
self._end_date = end_date