in train/CustomModel.py [0:0]
def update_state(self, y_true, y_pred,sample_weight=None):
## converting to a 6 * None matrix
corrects = tf.transpose(tf.cast(y_true,'float32'))
preds = tf.transpose(tf.math.round(y_pred))
## converting to booleans
booltrue = tf.equal(corrects,tf.constant(1.0))
boolpred = tf.equal(preds,tf.constant(1.0))
## logical and to get true positives - including multi labels
self.tp.assign_add(tf.reduce_sum(tf.cast(tf.math.logical_and(booltrue,boolpred),'float32')))
## sum to get all positives
self.trues.assign_add(tf.math.reduce_sum(corrects))