in code/pretrained_model.py [0:0]
def model_fn(model_dir):
    #create model    
    model = models.resnet18()
    #traffic sign dataset has 43 classes   
    nfeatures = model.fc.in_features
    model.fc = nn.Linear(nfeatures, 43)
    #load model
    weights = torch.load(f'{model_dir}/model/model.pt', map_location=lambda storage, loc: storage)
    model.load_state_dict(weights)
    model.eval()
    model.cpu()
    return model