in utils.py [0:0]
def load_model():
#check if GPU is available and set context
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#load model
model = models.resnet18()
#traffic sign dataset has 43 classes
nfeatures = model.fc.in_features
model.fc = nn.Linear(nfeatures, 43)
weights = torch.load('model/model.pt', map_location=lambda storage, loc: storage)
model.load_state_dict(weights)
for param in model.parameters():
param.requires_grad = False
model.to(device).eval()
return model