def load_model()

in utils.py [0:0]


def load_model():
    #check if GPU is available and set context
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    #load model
    model = models.resnet18()

    #traffic sign dataset has 43 classes
    nfeatures = model.fc.in_features
    model.fc = nn.Linear(nfeatures, 43)

    weights = torch.load('model/model.pt', map_location=lambda storage, loc: storage)
    model.load_state_dict(weights)

    for param in model.parameters():
        param.requires_grad = False

    model.to(device).eval()
    return model