in src/builder.py [0:0]
def __init__(self, train_data, val_data, labels_file, model_dir, num_workers=None, checkpoint_dir=None, epochs=10,
early_stopping_patience=10, checkpoint_frequency=1, grad_accumulation_steps=8, batch_size=8,
max_seq_len=512, learning_rate=0.00001, fine_tune=True):
self.model_dir = model_dir
self.fine_tune = fine_tune
self.learning_rate = learning_rate
self.checkpoint_frequency = checkpoint_frequency
self.grad_accumulation_steps = grad_accumulation_steps
self.early_stopping_patience = early_stopping_patience
self.epochs = epochs
self.checkpoint_dir = checkpoint_dir
self.train_data = train_data
self.val_data = val_data
self.labels_file = labels_file
self.batch_size = batch_size
# Note: Since the max seq len for pos embedding is 512 , in the pretrained bert this must be less than eq to 512
# Also note increasing the length greater also will create GPU out of mememory error
self._max_seq_len = max_seq_len
self.num_workers = num_workers or os.cpu_count() - 1
if self.num_workers <= 0:
self.num_workers = 0
self._network = None
self._train_dataloader = None
self._train_dataset = None
self._val_dataset = None
self._val_dataloader = None
self._trainer = None
self._lossfunc = None
self._optimiser = None
self._label_mapper = None
self._bert_model_name = "bert-base-cased"
self._token_lower_case = False
self._bert_config = None
self._tokenisor = None