def _get_test_data_loader()

in code/train_deploy.py [0:0]


def _get_test_data_loader(test_batch_size, training_dir):
    dataset = pd.read_csv(os.path.join(training_dir, "test.csv"))
    sentences = dataset.sentence.values
    labels = dataset.label.values

    input_ids = []
    for sent in sentences:
        encoded_sent = tokenizer.encode(sent, add_special_tokens=True)
        input_ids.append(encoded_sent)

    # pad shorter sentences
    input_ids_padded = []
    for i in input_ids:
        while len(i) < MAX_LEN:
            i.append(0)
        input_ids_padded.append(i)
    input_ids = input_ids_padded

    # mask; 0: added, 1: otherwise
    attention_masks = []
    # For each sentence...
    for sent in input_ids:
        att_mask = [int(token_id > 0) for token_id in sent]
        attention_masks.append(att_mask)

    # convert to PyTorch data types.
    train_inputs = torch.tensor(input_ids)
    train_labels = torch.tensor(labels)
    train_masks = torch.tensor(attention_masks)

    train_data = TensorDataset(train_inputs, train_masks, train_labels)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=test_batch_size)

    return train_dataloader