in cron-train/lambda-handler.py [0:0]
def run_training():
response = client.create_training_job(
TrainingJobName='videogames-xgboost-'+timenow,
HyperParameters={
'max_depth': max_depth
},
AlgorithmSpecification={
'TrainingImage': container,
'TrainingInputMode': 'File',
},
RoleArn=role_arn,
InputDataConfig=[
{
'ChannelName': 'train',
'DataSource': {
'S3DataSource': {
'S3DataType': 'S3Prefix',
'S3Uri': s3_input_train,
'S3DataDistributionType': 'FullyReplicated',
}
},
'ContentType': 'libsvm',
'CompressionType': 'None',
'InputMode': 'File',
},
{
'ChannelName': 'validation',
'DataSource': {
'S3DataSource': {
'S3DataType': 'S3Prefix',
'S3Uri': s3_input_validation,
'S3DataDistributionType': 'FullyReplicated',
}
},
'ContentType': 'libsvm',
'CompressionType': 'None',
'InputMode': 'File',
},
],
OutputDataConfig={
'S3OutputPath': s3_output
},
StoppingCondition={
'MaxRuntimeInSeconds': 3000
},
ResourceConfig={
'InstanceType': 'ml.m4.xlarge',
'InstanceCount': 1,
'VolumeSizeInGB': 3,
},
Tags=[
{
'Key': 'Training Time',
'Value': timenow
},
{
'Key': 'Max depth used',
'Value': max_depth
},
])
print(response)