pytorch/cuda_utils/smcv_utils/cuda/nhwc/conv.cpp (10 lines): - line 48: // TODO: Go through all the checking code again and make sure - line 210: // TODO: check that output->size() matches output_sizes - line 211: // TODO: check that weight matches output->sizes() - line 232: // TODO: check that output->size() matches output_sizes - line 233: // TODO: check that weight matches output->sizes() - line 256: // TODO: Use TensorGeometry here instead of the entire Tensor, which we - line 307: // TODO: Use something less heavy duty than a big honking mutex - line 333: // TODO: Stop manually allocating CUDA memory; allocate an ATen byte - line 436: // TODO: Shouldn't all returned results be successful? - line 788: // TODO: Consider renaming zero-indexed arguments to "self" pytorch/cuda_utils/smcv_utils/cuda/ROIAlign_cuda.cu (8 lines): - line 9: // TODO make it in a common file - line 65: // TODO: Change other blocks producing ROI to support half type as well - line 176: // TODO: Change other blocks producing ROI to support half type as well - line 484: //TODO: Math type is hard coded to float assuming double is not used, if needed, add a case for double as well. - line 486: //TODO: ROIs come in as float, fix other blocks so they come in as same type as input. - line 523: // TODO remove the dependency on input and use instead its sizes -> save memory - line 563: //TODO: Math type is hard coded to float assuming double is not used, if needed, add a case for double as well. - line 565: //TODO: ROIs come in as float, fix other blocks so they come in as same type as input. pytorch/sagemakercv/core/structures/keypoint.py (4 lines): - line 10: # FIXME remove check once we have better integration with device - line 18: # TODO should I split them? - line 129: # TODO this doesn't look great - line 153: # TODO make this nicer, this is a direct translation from C2 (but removing the inner loop) pytorch/sagemakercv/data/datasets/evaluation/coco/coco_eval.py (3 lines): - line 237: # TODO replace with get_img_info? - line 303: # TODO maybe remove this and make it explicit in the documentation - line 444: # TODO make it pretty pytorch/cuda_utils/smcv_utils/cuda/nhwc/Descriptors.h (3 lines): - line 36: // TODO: Add constructors for all of the descriptors - line 91: // TODO: Figure out why const-correctness doesn't work here - line 233: // TODO: Figure out why const-correctness doesn't work here pytorch/cuda_utils/smcv_utils/cuda/ROIPool_cuda.cu (3 lines): - line 10: // TODO make it in a common file - line 155: // TODO remove the dependency on input and use instead its sizes -> save memory - line 169: // TODO add more checks pytorch/sagemakercv/layers/iou_loss.py (3 lines): - line 186: # TODO: remove this in the future - line 224: # TODO: remove this in the future - line 261: # TODO: remove this in the future pytorch/sagemakercv/core/structures/boxlist_ops.py (3 lines): - line 44: # TODO maybe add an API for querying the ws / hs - line 110: #TODO: define for CPU as well - line 113: # TODO redundant, remove pytorch/sagemakercv/detection/roi_heads/mask_head/inference.py (2 lines): - line 11: # TODO check if want to return a single BoxList or a composite - line 193: # TODO: Is this JIT compatible? tensorflow/sagemakercv/utils/runner/runner.py (2 lines): - line 183: # TODO: move this method out of runner - line 211: # TODO: This is doubling up output pytorch/cuda_utils/smcv_utils/cuda/nms.cu (2 lines): - line 83: THCState *state = at::globalContext().lazyInitCUDA(); // TODO replace with getTHCState - line 126: // TODO improve this part pytorch/sagemakercv/utils/runner/runner.py (2 lines): - line 125: # TODO: move this method out of runner - line 148: # TODO: This is doubling up output tensorflow/sagemakercv/core/box_utils.py (2 lines): - line 402: # TODO: can this be merged into above? - line 488: # TODO: Do we need both of these? pytorch/sagemakercv/core/structures/segmentation_mask.py (2 lines): - line 98: # TODO chck if necessary - line 137: # TODO add squeeze? pytorch/sagemakercv/data/datasets/coco.py (2 lines): - line 94: # TODO might be better to add an extra field - line 197: # TODO might be better to add an extra field pytorch/sagemakercv/detection/roi_heads/keypoint_head/inference.py (2 lines): - line 36: # TODO remove and use only the Keypointer - line 107: # TODO do this properly pytorch/sagemakercv/detection/rpn/anchor_generator.py (2 lines): - line 165: # TODO check if want to return list of not - line 186: # TODO: Create a BatchedBoxlist class to keep these data structures pytorch/sagemakercv/core/box_coder.py (2 lines): - line 37: TO_REMOVE = 1 # TODO remove - line 69: TO_REMOVE = 1 # TODO remove tensorflow/sagemakercv/core/roi_ops.py (2 lines): - line 32: # TODO: Remove when Batched NMS stop leading to eval metrics being all 0 - line 292: # TODO: Remove when Batched NMS stop leading to eval metrics being all 0 pytorch/sagemakercv/core/structures/image_list.py (1 line): - line 72: # TODO Ideally, just remove this and let me model handle arbitrary pytorch/sagemakercv/data/datasets/evaluation/voc/voc_eval.py (1 line): - line 13: # TODO need to make the use_07_metric format available pytorch/sagemakercv/layers/roi_align.py (1 line): - line 39: ## TODO: NHWC kernel + transposes is faster than NCHW backward kernel pytorch/cuda_utils/smcv_utils/nms.h (1 line): - line 33: // TODO raise error if not compiled with CUDA tensorflow/sagemakercv/training/losses/rpn_losses.py (1 line): - line 72: # TODO: Test giou loss for rpn head pytorch/sagemakercv/layers/sigmoid_focal_loss.py (1 line): - line 8: # TODO: Use JIT to replace CUDA implementation in the future. pytorch/sagemakercv/detection/roi_heads/mask_head/roi_mask_predictors.py (1 line): - line 42: #TODO: this transpose may be needed for modularity of Detectron repo pytorch/sagemakercv/detection/detector/generalized_rcnn.py (1 line): - line 93: ## TODO: take care of NHWC/NCHW cases for RPN-only case pytorch/cuda_utils/smcv_utils/cuda/nhwc/UpSampleNearest2d.cu (1 line): - line 172: // TODO: kernel implementation could stride on spatial dimension. We probably pytorch/sagemakercv/detection/roi_heads/keypoint_head/loss.py (1 line): - line 93: # TODO check if this is the right one, as BELOW_THRESHOLD pytorch/sagemakercv/detection/backbone/fpn.py (1 line): - line 68: # TODO use size instead of scale to make it robust to different sizes pytorch/sagemakercv/utils/runner/hooks/logger/text.py (1 line): - line 37: # TODO: resolve this hack pytorch/sagemakercv/detection/roi_heads/box_head/roi_box_feature_extractors.py (1 line): - line 85: ## TODO: we can get rid of this transpose by changing box head loss computation accordingly tensorflow/sagemakercv/training/trainers.py (1 line): - line 46: # TODO: tensorflow/sagemakercv/core/spatial_transform_ops.py (1 line): - line 196: else: # TODO: Restore this API int32 dtype will be supported on GPUs. pytorch/sagemakercv/layers/ce_loss.py (1 line): - line 118: # TODO: handle these two reserved arguments pytorch/sagemakercv/detection/roi_heads/box_head/inference.py (1 line): - line 59: # TODO think about a representation of batch of boxes pytorch/sagemakercv/utils/comm.py (1 line): - line 137: TODO: Test this pytorch/sagemakercv/layers/make_layers.py (1 line): - line 117: # TODO: need to fix GN issue for NHWC pytorch/sagemakercv/training/optimizers/schedulers/lr_scheduler.py (1 line): - line 8: # FIXME ideally this would be achieved with a CombinedLRScheduler, pytorch/sagemakercv/core/structures/bounding_box.py (1 line): - line 181: # TODO should I filter empty boxes here? tensorflow/sagemakercv/data/coco/dataloader_utils.py (1 line): - line 350: # TODO: This needs to be updated for new mask format pytorch/sagemakercv/detection/roi_heads/roi_heads.py (1 line): - line 25: # TODO rename x to roi_box_features, if it doesn't increase memory consumption pytorch/sagemakercv/inference/tester.py (1 line): - line 20: torch.cuda.empty_cache() # TODO check if it helps pytorch/cuda_utils/smcv_utils/cuda/nms_batched.cu (1 line): - line 147: //TODO: add an option for non sorted input boxes pytorch/cuda_utils/smcv_utils/cuda/nhwc/UpSample.cuh (1 line): - line 10: /* TODO: move this to a common place */ pytorch/sagemakercv/layers/smooth_l1_loss.py (1 line): - line 5: # TODO maybe push this to nn? pytorch/sagemakercv/data/samplers/distributed.py (1 line): - line 3: # FIXME remove this once c10d fixes the bug it has pytorch/sagemakercv/detection/backbone/resnet.py (1 line): - line 291: # TODO: specify init for the above pytorch/sagemakercv/utils/runner/hooks/checkpoint.py (1 line): - line 45: # TODO fix optimizer state dict to enable saving pytorch/sagemakercv/detection/rpn/inference.py (1 line): - line 400: # TODO resolve this difference and make it consistent. It should be per image, tensorflow/sagemakercv/training/builder.py (1 line): - line 27: # TODO Add losses to builders tensorflow/sagemakercv/utils/runner/hooks/logger/text.py (1 line): - line 53: # TODO: resolve this hack pytorch/cuda_utils/smcv_utils/cuda/generate_mask_targets.cu (1 line): - line 439: //TODO: larger threads-per-block might be better here, because each CTA uses 32 KB of shmem, pytorch/cuda_utils/smcv_utils/cuda/SigmoidFocalLoss_cuda.cu (1 line): - line 14: // TODO make it in a common file