def _resource_apply_dense()

in tensorflow/sagemakercv/training/optimizers/novograd.py [0:0]


    def _resource_apply_dense(self, grad, var, apply_state=None):
        var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = (apply_state or {}).get(
            (var_device, var_dtype)
        ) or self._fallback_apply_state(var_device, var_dtype)
        weight_decay = self._get_hyper("weight_decay")
        grad_averaging = self._get_hyper("grad_averaging")

        v = self.get_slot(var, "v")
        g_2 = tf.reduce_sum(tf.square(tf.cast(grad, tf.float32)))
        v_t = tf.cond(
            tf.equal(self.iterations, 0),
            lambda: g_2,
            lambda: v * coefficients["beta_2_t"]
            + g_2 * coefficients["one_minus_beta_2_t"],
        )
        v_t = v.assign(v_t, use_locking=self._use_locking)

        if self.amsgrad:
            vhat = self.get_slot(var, "vhat")
            vhat_t = vhat.assign(tf.maximum(vhat, v_t), use_locking=self._use_locking)
            grad = grad / (tf.sqrt(vhat_t) + self.epsilon)
        else:
            grad = grad / (tf.sqrt(v_t) + self.epsilon)
        
        var_name = self._get_variable_name(var.name)
        if self._do_use_weight_decay(var_name):
            grad += weight_decay * var

#        grad = tf.cond(
#                tf.greater(weight_decay, 0), lambda: grad + weight_decay * var, lambda: grad
#                )
        grad = tf.cond(
                tf.logical_and(grad_averaging, tf.not_equal(self.iterations, 0)),
                lambda: grad * coefficients["one_minus_beta_1_t"],
                lambda: grad,
                )
        m = self.get_slot(var, "m")
        return tf.raw_ops.ResourceApplyKerasMomentum(
                var=var.handle,
                accum=m.handle,
                lr=coefficients["lr_t"],
                grad=grad,
                momentum=coefficients["beta_1_t"],
                use_locking=self._use_locking,
                use_nesterov=False,
                )

        def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
            var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = (apply_state or {}).get(
                (var_device, var_dtype)
                ) or self._fallback_apply_state(var_device, var_dtype)
        weight_decay = self._get_hyper("weight_decay")
        grad_averaging = self._get_hyper("grad_averaging")

        v = self.get_slot(var, "v")
        g_2 = tf.reduce_sum(tf.square(tf.cast(grad, tf.float32)))
        # v is just a scalar and does not need to involve sparse tensors.
        v_t = tf.cond(
            tf.equal(self.iterations, 0),
            lambda: g_2,
            lambda: v * coefficients["beta_2_t"]
            + g_2 * coefficients["one_minus_beta_2_t"],
        )
        v_t = v.assign(v_t, use_locking=self._use_locking)

        if self.amsgrad:
            vhat = self.get_slot(var, "vhat")
            vhat_t = vhat.assign(tf.maximum(vhat, v_t), use_locking=self._use_locking)
            grad = grad / (tf.sqrt(vhat_t) + self.epsilon)
        else:
            grad = grad / (tf.sqrt(v_t) + self.epsilon)

        var_name = self._get_variable_name(var.name)

        if self._do_use_weight_decay(var_name):
            grad +=  weight_decay * tf.gather(var, indices)

#        grad = tf.cond(
#            tf.greater(weight_decay, 0),
#            lambda: grad + weight_decay * tf.gather(var, indices),
#            lambda: grad,
#        )
        grad = tf.cond(
            tf.logical_and(grad_averaging, tf.not_equal(self.iterations, 0)),
            lambda: grad * coefficients["one_minus_beta_1_t"],
            lambda: grad,
        )
        m = self.get_slot(var, "m")
        return tf.raw_ops.ResourceSparseApplyKerasMomentum(
            var=var.handle,
            accum=m.handle,
            lr=coefficients["lr_t"],
            grad=grad,
            indices=indices,
            momentum=coefficients["beta_1_t"],
            use_locking=self._use_locking,
            use_nesterov=False,
        )