in src/preprocessor.py [0:0]
def preprocess_handler(inference_record):
#*********************
# a single inference implementation
#*********************
input_enc_type = inference_record.endpoint_input.encoding
input_data = inference_record.endpoint_input.data.rstrip("\n")
output_data = get_class_val(inference_record.endpoint_output.data.rstrip("\n"))
eventmedatadata = inference_record.event_metadata
custom_attribute = json.loads(eventmedatadata.custom_attribute[0]) if eventmedatadata.custom_attribute is not None else None
is_test = eval_test_indicator(custom_attribute) if custom_attribute is not None else True
if is_test:
return []
elif input_enc_type == "CSV":
outputs = output_data+','+input_data
return {str(i).zfill(20) : d for i, d in enumerate(outputs.split(","))}
elif input_enc_type == "JSON":
outputs = {**{LABEL: output_data}, **json.loads(input_data)}
write_to_file(str(outputs), "log")
return {str(i).zfill(20) : outputs[d] for i, d in enumerate(outputs)}
else:
raise ValueError(f"encoding type {input_enc_type} is not supported")