in src/inference.py [0:0]
def predict_fn(input_data, model):
"""
SageMaker XGBoost model server invokes `predict_fn` on the return value of `input_fn`.
Return a two-dimensional NumPy array where the first columns are predictions
and the remaining columns are the feature contributions (SHAP values) for that prediction.
"""
is_feature_importance = False
prediction = model.predict(input_data)
if is_feature_importance:
feature_contribs = model.predict(input_data,
pred_contribs=True,
validate_features=False)
output = np.hstack((prediction[:, np.newaxis], feature_contribs))
else:
output = prediction
return output