in deployment/handler.py [0:0]
def preprocess(self, data):
"""
Scales and normalizes a PIL image for an U-net model
"""
image = data[0].get("data")
if image is None:
image = data[0].get("body")
image_transform = transforms.Compose(
[
# must be consistent with model training
transforms.Resize((96, 128)),
transforms.ToTensor(),
# default statistics from imagenet
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
image = Image.open(io.BytesIO(image)).convert(
"RGB"
) # in case of an alpha channel
image = image_transform(image).unsqueeze_(0)
return image