distributed_training/train_pytorch_single_maskrcnn.py [294:313]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    logger.info(args)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = train(cfg, args)

    if not args.skip_test:
        if not cfg.PER_EPOCH_EVAL:
            test_model(cfg, model, args)


if __name__ == "__main__":
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



distributed_training/train_pytorch_smdataparallel_maskrcnn.py [312:331]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    logger.info(args)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = train(cfg, args)

    if not args.skip_test:
        if not cfg.PER_EPOCH_EVAL:
            test_model(cfg, model, args)


if __name__ == "__main__":
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



