in edge_inference/greengrass-ml-inference/src/classifier_train.py [0:0]
def classifier():
inputs = Input(shape=(28,28,1))
x = Conv2D(64, (3,3),padding='same')(inputs)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = MaxPool2D(pool_size=(2, 2))(x) # 14x14
x = Conv2D(64, (3,3),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = MaxPool2D(pool_size=(2, 2))(x) # 7x7
x = Conv2D(128, (3,3),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Conv2D(128, (3,3),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(128)(x)
x = LeakyReLU(0.2)(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x)
model.summary()
return model