in distributed_training/train_pytorch_single_maskrcnn.py [0:0]
def train(cfg, args):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if use_amp:
# Initialize mixed-precision training
use_mixed_precision = cfg.DTYPE == "float16"
amp_opt_level = 'O1' if use_mixed_precision else 'O0'
model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level)
print("model parameter size: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
# Save model
save_to_disk = True
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader, iters_per_epoch = make_data_loader(
cfg,
is_train=True,
is_distributed=args.distributed,
start_iter=arguments["iteration"],
data_dir = args.data_dir
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
# set the callback function to evaluate and potentially
# early exit each epoch
if cfg.PER_EPOCH_EVAL:
per_iter_callback_fn = functools.partial(
mlperf_test_early_exit,
iters_per_epoch=iters_per_epoch,
tester=functools.partial(test, cfg=cfg),
model=model,
distributed=args.distributed,
min_bbox_map=cfg.MIN_BBOX_MAP,
min_segm_map=cfg.MIN_MASK_MAP)
else:
per_iter_callback_fn = None
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
use_amp,
cfg,
per_iter_end_callback_fn=per_iter_callback_fn,
)
return model