def get_model()

in notebooks/train_nn.py [0:0]


def get_model():
    
    model = tf.keras.models.Sequential([
      tf.keras.layers.Dense(28, input_dim=28, activation='relu'),
      tf.keras.layers.Dense(8, activation='relu'),
      tf.keras.layers.Dense(1, activation='sigmoid')
    ])
    
    print(model.summary)
    
    model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])
    

    return model