in src/entrypoint/gluonts_example/evaluator.py [0:0]
def get_aggregate_metrics(self, metric_per_ts: pd.DataFrame) -> Tuple[Dict[str, float], pd.DataFrame]:
totals, metrics_per_ts = super().get_aggregate_metrics(metric_per_ts)
# region: for each metric, aggregate across timeseries.
# Aggregation step
agg_funs = {
"wMAPE": "mean",
}
assert set(metric_per_ts.columns) >= agg_funs.keys(), "The some of the requested item metrics are missing."
my_totals = {key: metric_per_ts[key].agg(agg) for key, agg in agg_funs.items()}
# Update base metrics with our custom metrics.
totals.update(my_totals)
# endregion
# Save montage
self.mp.savefig()
# Make sure to flush buffered results to the disk.
self.out_f.close()
return totals, metrics_per_ts