code/dataset_prep.py [21:34]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
warnings.filterwarnings("ignore")

import logging
logger = logging.getLogger()
logger.setLevel(logging.CRITICAL)

s3 = boto3.client("s3")
# Aggregate data by region and Quantity
def get_region_columns(df, region):
    return [col for col in df.columns if region in col]

def prepare_data(df_raw):
    print('******************* Prepare Data **********************')
    product = df_raw[(df_raw['item'] == "mens_clothing")]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



dataset_prep.py [14:27]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
warnings.filterwarnings("ignore")

import logging
logger = logging.getLogger()
logger.setLevel(logging.CRITICAL)

s3 = boto3.client("s3")
# Aggregate data by region and Quantity
def get_region_columns(df, region):
    return [col for col in df.columns if region in col]

def prepare_data(df_raw):
    print('******************* Prepare Data **********************')
    product = df_raw[(df_raw['item'] == "mens_clothing")]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



