in code/train.py [0:0]
def evaluate(model, test_df, regions, region_states):
print("******* Making Predictions for 90days in future *********")
predictions = model.predict(steps_ahead=90)
test_preds = predictions.query('index > "2009-04-29"').copy()
print('******************************', test_preds.shape)
print('******************************', test_preds.head())
## root level metrics
print('************ Root Level Metrics ************')
total_mse = mean_squared_error(test_df['total'], test_preds['total'])
print('Total: MSE: {}\n'.format(total_mse))
print('************ Region Level Metrics ************')
for region in regions:
mse = mean_squared_error(test_df[region], test_preds[region])
print('{}: MSE: {}\n'.format(region,mse))
print('************ State Level Metrics ************')
for state in region_states:
mse = mean_squared_error(test_df[state], test_preds[state])
print('{}:MSE: {}\n'.format(state,mse))