in ML Pipelines scripts/pipeline.py [0:0]
def get_pipeline(
region,
sagemaker_project_arn=None,
role=None,
default_bucket=None,
model_package_group_name="CustomerChurnPackageGroup", # Choose any name
pipeline_name="CustomerChurnDemo-p-ewf8t7lvhivm", # You can find your pipeline name in the Studio UI (project -> Pipelines -> name)
base_job_prefix="CustomerChurn", # Choose any name