in scikit_learn_nltk_local_processing/processing_script.py [0:0]
def main():
print("Processing Started")
# Convert command line args into a map of args
args_iter = iter(sys.argv[1:])
args = dict(zip(args_iter, args_iter))
print('Received arguments {}'.format(args))
print('Reading input data from {}'.format(input_data_path))
print("Got Args: {}".format(args))
input_files = [file for file in os.listdir(input_data_path) if file.endswith('.' + 'txt')]
print('Available input text files: {}'.format(input_files))
if args['job-type'] == 'word-tokenize':
print('Word Tokenize Job Type Started')
all_tokenized_words = []
for input_file in input_files:
file = open(os.path.join(input_data_path, input_file), 'r')
data = file.read()
tokenized_words = word_tokenize(data)
print('Detected {} words in {} file'.format(tokenized_words, input_file))
all_tokenized_words.append(tokenized_words)
else:
print('{} job-type not supported! Doing Nothing'.format(args['job-type']))
output_file = os.path.join(processed_data_path, 'all_tokenized_words_'+datetime.now().strftime("%d%m%Y_%H_%M_%S")+'.txt')
print('Writing output file: {}'.format(output_file))
f = open(output_file, "a")
f.write('Tokenized Words: {}'.format(all_tokenized_words))
f.close()
output_files = [file for file in os.listdir(processed_data_path) if file.endswith('.' + 'txt')]
print('Available output text files: {}'.format(output_files))
print("Processing Complete")