in scikit_learn_script_mode_local_serving_no_model_artifact/scikit_learn_script_mode_local_serving_no_model_artifact.py [0:0]
def main():
sagemaker_session = LocalSession()
sagemaker_session.config = {'local': {'local_code': True}}
dummy_model_file = Path("dummy.model")
dummy_model_file.touch()
with tarfile.open("model.tar.gz", "w:gz") as tar:
tar.add(dummy_model_file.as_posix())
# For local training a dummy role will be sufficient
role = DUMMY_IAM_ROLE
model = SKLearnModel(
role=role,
model_data='file://./model.tar.gz',
framework_version='0.23-1',
py_version='py3',
source_dir='code',
entry_point='inference.py'
)
print('Deploying endpoint in local mode')
print(
'Note: if launching for the first time in local mode, container image download might take a few minutes to complete.')
predictor = model.deploy(
initial_instance_count=1,
instance_type='local',
)
do_inference_on_local_endpoint(predictor)
print('About to delete the endpoint to stop paying (if in cloud mode).')
predictor.delete_endpoint(predictor.endpoint_name)